TITANs Meeting 11th - 13th December 2024

# Do SMBH mass estimates agree one to each other?

A study on the systematics of indirect MBH estimators in the **ETHER** database



Joaquín Hernández Yévenes

Universidad de Concepción

Facultad de Cs. Físicas y Matemáticas

Departamento de Astronomía



### Supermassive Black Holes (SMBH)

• Supermassive black holes (SMBH), ranging from  $10^5$  to  $10^{10}$  M $_{\odot}$ , are present in galactic nuclei (Graham+2016), influencing the evolution and structure of host galaxies (Rees 1984, Kormendy+2013).



**Left:** Image of the shadow of M87<sup>\*</sup> and its emission at 230 GHz. **Right:** Same, but for Sgr A<sup>\*</sup> (EHTC+2019, 2022)

### **Event Horizon and Environs (ETHER) sample**

- A curated database for EHT and ngEHT target selection
- ~3.6 million SMBH masses (181 measurements, ~3.1 million estimates)
- More details will be available in Silpa+in prep (presented in Ramakrishnan+2023, updated in Hernández-Yévenes+2024, Nair+2024).
- For more info, see presentations by Dhanya, Silpa, Vicente and Bidisha (all coming next!)



## **MBH estimates in ETHER**

- Compilations from M-sigma, e.g, Portsmouth (pPXF) or Wisconsin (PCA). Around 1.5M estimates.
- Single-epoch spectra (or single-epoch RM) from Rakshit+2020 (500k estimates)
- WISE2MBH (3M estimates+uplimits,~75% disponibility)



#### WISE2MBH: Scaling from mid-IR photometry (Hernández-Yévenes+2024)

• Uses WISE bands for total stellar mass and SFR estimation, AGN selection, morphology estimation, etc (mainly work from Jarrett & Cluver).



- Bulge-to-total ratios are used to get bulge masses and then scaled down to black hole mass (Schutte+2019, Hernández-Yévenes+2024).
- Empirical AGN compensation is applied in updated version (Hernández-Yévenes+in prep).





# WISE2MBH: Scaling from mid-IR photometry

**Figure:** Comparison of different  $M_{BH}$ - $M_{Bulge}$ scaling relations from the literature, including **Kormendy+2013**, **Saglia+2016**, **Schutte+2019** and the modified scaling presented in this work. Grey area represents the limit of the WISE2MBH algorithm for log  $M_{BH}$ <5, where it drops all estimates.

$$\log M_{\rm BH} = 1.12 \log \left(\frac{M_{\rm Bulge}}{10^{11}}\right) + 8.84$$



# WISE2MBH: Scaling from mid-IR photometry



**Figure:** Comparison diagram of control sample MBH (measurements in right and estimates in left) vs. WISE2MBH estimates. When measurements and estimates are both compared against WISE2MBH a 0.73 correlation score (Spearman) is obtained with a scatter of 0.63 dex

# **Other indirect MBH estimators**

- M-sigma scaling relations (e.g., Kormendy+13, Saglia+16, Graham23).
- Single-epoch spectra with RM scalings (Rakshit+20, Shen+24).
- Using MASSIVE total stellar masses (Veale+17) with scaling from WISE2MBH.
- WISE2MBH with WXSC photometry (Jarrett+19, Cluver+ in prep).



## **Other indirect MBH estimators**

- M-sigma scaling relations (e.g., Kormendy+13, Saglia+16, Graham23).
- Single-epoch spectra with RM scalings (Rakshit+20, Shen+24).
- Using MASSIVE total stellar masses (Veale+17) with scaling from WISE2MBH.
- WISE2MBH with WXSC photometry (Jarrett+19, Cluver+ in prep).



# **Other indirect MBH estimators**

- M-sigma scaling relations (e.g., Kormendy+13, Saglia+16, Graham23).
- Single-epoch spectra with RM scalings (Rakshit+20, Shen+24).
- Using MASSIVE total stellar masses (Veale+17) with scaling from WISE2MBH.
- WISE2MBH with WXSC photometry (Jarrett+19, Cluver+ in prep).









# M-sigma vs WISE2MBH



 $M_{BH}^{W2M}$  [log  $M_{\odot}$ ]

# Single-epoch vs WISE2MBH



 $M_{BH}^{W2M}$  [log  $M_{\odot}$ ]

# AllWISE vs WXSC using WISE2MBH



# MASSIVE vs WISE as a prior estimate in WISE2MBH



17

# MASSIVE vs WISE as a prior estimate in WISE2MBH



18



#### Publications (MNRAS + A&A in prep.)

#### Code (Pipeline in GitHub)



#### **WISE2MBH:** a scaling-based algorithm for probing supermassive black hole masses through *WISE* catalogues

J. Hernández-Yévenes<sup>9</sup>, <sup>1</sup>\* N. Nagar<sup>9</sup>, <sup>1</sup> V. Arratia<sup>9</sup> and T. H. Jarrett<sup>9</sup>, <sup>1</sup> <sup>1</sup>Departamento de Astronomia, Universidad de Concepción, Av. Esteban Iturra s/n, Casilla 160-C, Concepción, Chile <sup>2</sup>Department of Astronomy, University of Cape Town, Rondebosch 7700, South Africa

<sup>3</sup>Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John Street, Hawthorn 3122, Australia <sup>4</sup>Institute for Astronomy, University of Hawaii at Hilo, 640 N Aohoku Pl 209, Hilo, HI 96720, USA

Accepted 2024 May 15. Received 2024 May 14; in original form 2023 September 27

#### Welcome to the WISE2MBH repository! 🔌



#### Instalation

To install wise2mbh-0.8.1.2 you will need to have git installed. If you don't have it, you can install it in Linux with the following command:

sudo apt install git

To install wise2mbh-0.8.1.2 , use the following command:

pip install git+https://github.com/joacoh/wise2mbh.git

### Evaluating and harmonizing systematics of diverse indirect $M_{\rm BH}$ estimators for SMBHs

J. Hernández-Yévenes<sup>1 \*</sup> <sup>(i)</sup>, T. H. Jarrett<sup>2 \*\*</sup> <sup>(i)</sup>, N. Nagar<sup>1</sup> <sup>(i)</sup>, M. E. Cluver<sup>3,4</sup> <sup>(i)</sup>, and V. Arratia<sup>1</sup> <sup>(i)</sup>

<sup>1</sup> Departamento de Astronomía, Universidad de Concepción, Av. Esteban Iturra s/n, Casilla 160-C, Concepción, Chile

<sup>2</sup> Institute for Astronomy, University of Hawaii at Hilo, 640 N Aohoku Pl 209, Hilo, HI 96720, USA

<sup>3</sup> Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John Street, Hawthorn, 3122, Australia

<sup>4</sup> Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa

Received December XX, 2024; accepted March YY, 2025

#### THANKS FOR YOUR ATTENTION!

ιŪ

ιŪ

